Abstract

Considerable progress has been made in the understanding of tumor necrosis factor (TNF) signaling; however, the molecular and biochemical basis of tumor resistance to the cytotoxic action of TNF are still not definitively identified yet. Although a role of c-Jun N-terminal kinase (JNK) pathway has been suggested as an effector in TNF signaling, its exact relative contribution and its interaction with ceramide pathway and tumor resistance to TNF remain unknown. The relationship between JNK activation and human breast adenocarcinoma MCF7 resistance acquisition to the cytotoxic action of TNF was therefore investigated. We demonstrate that TNF triggers JNK activation in both TNF-sensitive MCF7 cells and its resistant derivative, RA1/1001. In addition, when MCF7 cells were stably transfected with mitogen-activated protein kinase kinase 4 (MKK4) dominant-negative cDNA or transiently transfected with a dominant-negative c-Jun mutant (TAM 67), their susceptibility to the cytotoxic action of TNF remains comparable with control cells. We also demonstrated that JNK activation does not require ceramide generation since in MCF7 cells transfected with a dominant-negative derivative of FADD (FADD-DN), which are resistant to the cytotoxic action of TNF, TNF induced JNK activation in the absence of ceramide generation. Furthermore, our data indicate that exogenous permeable synthetic ceramide C-6 induced the killing of MCF7 cells transfected with MKK4 dominant-negative cDNA. These results provide strong evidence indicating that tumor acquisition of resistance to the cytotoxic action of TNF may occur either independently or at a level downstream of JNK activation and suggest that JNK activation is not linked to ceramide pathway in TNF-mediated apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.