Abstract

In this work, we present a new method based on parallel genetic algorithm (GA) for in-between shot data analysis of the Charge-Exchange (CX) spectra on the HL-2A tokamak. The neutral beam induced active CX spectra is a powerful ion diagnostic technique to provide spatially resolved ion temperature and rotation velocity measurements on fusion devices. Currently CX spectra obtained in HL-2A experiments are mainly analyzed by the CXSFIT code [A. D. Whiteford, et.al, 2007]. While the analysis itself is fast, its accuracy relies on proper setup of the initial values for the spectral fitting parameters. Time-consuming manual interventions are needed. In the new parallel GA code, a two-loop GA analysis is used to gradually update the fitting parameter search ranges, which enables automatic analysis. A parallel algorithm based on the Linux Message Passing Interface (MPI) cluster is adapted to speed up the process. In a test run, for a set of 1600 data slices, the total time elapsed with 8 CPU nodes is about 310 s (0.2 s per data slice), which is efficient for in-between shot analysis on HL-2A. The uncertainty calculations using virtual CX signals with a noise level up to 5% show that the accuracies for ion temperature and rotation velocity are better than 10.14% and 2.14%, respectively. The ion temperature and rotation velocity obtained by applying the new parallel genetic algorithm on experimental CX data show good agreement with the conventional CXSFIT results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call