Abstract
Next-generation sequencing-based methodologies have revolutionized the analysis of protein-nucleic acid complexes; yet these novel approaches have rarely been applied in virology. Because it has an RNA genome, RNA-protein interactions play critical roles in human immunodeficiency virus type 1 (HIV-1) replication. In many cases, the binding sites of proteins on HIV-1 RNA molecules in physiologically relevant settings are not known. Cross-linking-immunoprecipitation sequencing (CLIP-seq) methodologies, which combine immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, is a powerful technique that can be applied to such questions as it provides a global account of RNA sequences bound by a RNA-binding protein of interest in physiological settings at near-nucleotide resolution. Here, we describe the application of the CLIP-seq methodology to identify the RNA molecules that are bound by the HIV-1 Gag protein in cells and in virions. This protocol can easily be applied to other viral and cellular RNA-binding proteins that influence HIV-1 replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.