Abstract

BackgroundSegmental duplications (SDs) are blocks of genomic sequence of 1-200 kb that map to different loci in a genome and share a sequence identity > 90%. SDs show at the sequence level the same characteristics as other regions of the human genome: they contain both high-copy repeats and gene sequences. SDs play an important role in genome plasticity by creating new genes and modeling genome structure. Although data is plentiful for mammals, not much was known about the representation of SDs in plant genomes. In this regard, we performed a genome-wide analysis of high-identity SDs on the sequenced grapevine (Vitis vinifera) genome (PN40024).ResultsWe demonstrate that recent SDs (> 94% identity and >= 10 kb in size) are a relevant component of the grapevine genome (85 Mb, 17% of the genome sequence). We detected mitochondrial and plastid DNA and genes (10% of gene annotation) in segmentally duplicated regions of the nuclear genome. In particular, the nine highest copy number genes have a copy in either or both organelle genomes. Further we showed that several duplicated genes take part in the biosynthesis of compounds involved in plant response to environmental stress.ConclusionsThese data show the great influence of SDs and organelle DNA transfers in modeling the Vitis vinifera nuclear DNA structure as well as the impact of SDs in contributing to the adaptive capacity of grapevine and the nutritional content of grape products through genome variation. This study represents a step forward in the full characterization of duplicated genes important for grapevine cultural needs and human health.

Highlights

  • Segmental duplications (SDs) are blocks of genomic sequence of 1-200 kb that map to different loci in a genome and share a sequence identity > 90%

  • We compared three different settings of the RepeatMasker and Tandem Repeats Finder (TRF) softwares: i) known repeats with < 10% divergence from the consensus sequence and tandem repeats converted to lowercase, as performed in previous whole-genome shotgun sequence detection (WSSD) analyses

  • Of the Vitis genome was masked with a threshold divergence equal to 10, whereas 29.26% was masked with no divergence threshold

Read more

Summary

Introduction

Segmental duplications (SDs) are blocks of genomic sequence of 1-200 kb that map to different loci in a genome and share a sequence identity > 90%. Data is plentiful for mammals, not much was known about the representation of SDs in plant genomes. In this regard, we performed a genome-wide analysis of high-identity SDs on the sequenced grapevine (Vitis vinifera) genome (PN40024). Grapevine (Vitis vinifera) is one of the oldest (appeared approximately 65 million years ago) and most important fruit crops in the world [1]. Today, this species is widely cultivated and represents almost the 98% of grape vineyards subdivided into table, wine and raisin grapes [2]. A genotype originally derived from the Pinot Noir grape variety (PN40024) has recently been sequenced and assembled using a whole-genome shotgun (WGS)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call