Abstract

This work focuses on a Mach 0.6 turbulent, compressible jet flow field with simultaneously sampled near and far-field pressure, as well as 10 kHz time-resolved PIV. Experiments have been conducted in the fully anechoic chamber and jet facility at Syracuse University. The PIV measurements were taken in the streamwise plane of the jet along the center plane at various downstream locations. In addition, measurements were taken off of the center plane to obtain a three-dimensional view of the jet flow. Active flow control (both open and closed-loop) was performed in order to see the effects on the potential core length and overall sound pressure levels. Various reduced-order models have been used to analyze previous experimental data sets at Syracuse University. This paper will focus on the analysis of the flow physics, using the time-resolved velocity field coupled with the simultaneously sampled pressure. Novel modeling approaches such as observable inferred decomposition and cluster-based reduced-order modeling have been implemented in an effort to link the near-field velocity with the far-field acoustics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.