Abstract
Magnetic gears perform the same fundamental power conversion as mechanical gears. However, magnetic gears have significant potential benefits due to their noncontact operation. This paper compares three different ways to achieve high gear ratios using coaxial magnetic gears by evaluating trends for radial flux coaxial magnetic gears with surface mounted permanent magnets. First, a single-stage design can be used, but the torque density and efficiency both decline as the gear ratio increases. Additionally, the gear ratio achievable with a single-stage coaxial magnetic gear is limited by practical considerations, such as the maximum number of modulators and pole pairs that can be used within the given space. Second, a multistage design can be formed by connecting single-stage designs in series. Multistage designs can achieve much higher net gear ratios with much less of a torque density penalty, especially as the number of stages increases, but this entails greater complexity. Third, the compound differential coaxial magnetic gear (CDCMG) is proposed. The CDCMG is formed by interconnecting two single-stage coaxial magnetic gears and can achieve gear ratios much higher than the product of the gear ratios of the individual stages. However, the circulating power in the CDCMG leads to poor efficiencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.