Abstract

Ordered mesoporous oxide films have lower thermal conductivities than their corresponding dense films. In order to apply ordered mesoporous oxide films, which possess excellent properties, in various fields, it is necessary to determine their thermal insulation mechanism. In this study, we synthesized ordered and disordered mesoporous TiO 2 films as a function of the drying time. While they had similar porosities, they had different pore structures and thermal conductivities. In order to reveal the relationship between the pore structure and thermal conductivity, a simulation of the heat transfer was performed. The thermal properties, temperature distribution, and heat flux vector of the mesoporous films were simulated by finite element analysis. From the comparison of the experimental and simulated results, the mechanism of thermal insulation in the pore structure could be demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.