Abstract
Membrane distillation (MD) isan emerging separation technology for desalination, solution concentration and waste water treatment. As a thermal driven device, heat transfer coefficients are critical to theMDperformance. In this study, the transmembrane heat and mass transfers are rigorously accounted for in the computational fluid dynamics (CFD) simulation. Flat plate direct contact membrane distillation (DCMD) modules with smooth-surface and rough-surface channels as well as in co-flow and counter-flow configurations are analyzed for the desalination application. For different rough-surface channels, flow configurations and operation conditions, the simulated permeation fluxes are fairly close to the experimental results. The local distributions of heat transfer coefficients show very high values at fluid inlets. For the simulated flat plate modules, the local heat transfer coefficients fall between conventional correlations of heat exchangers with circular channels and parallel plates and the module average heat transfer coefficients are much higher than the conventional correlations. This study reveals the values and distribution characteristics of the heat transfer coefficients in DCMD modules, which is important for the design of DCMD modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.