Abstract
Abstract Hazard analysis is the core of numerous approaches to safety engineering, including the functional safety standard ISO-26262 (FuSa) and Safety of the Intended Function (SOTIF) ISO/PAS 21448. We focus on addressing the immense challenge associated with the scope of training and testing for rare hazard for autonomous drivers, leading to the need to train and test on the equivalent of >108 naturalistic miles. We show how risk can be estimated and bounded using the probabilistic hazard analysis. We illustrate the definition of hazards using well-established tests for hazard identification. We introduce a dynamic hazard approach, whereby autonomous drivers continuously monitor for potential and developing hazard, and estimate their time to materialization (TTM). We describe systematic TTM modeling of the various hazard types, including environment-specific perception limitations. Finally, we show how to enable accelerated development and testing by training a neural network sampler to generate scenarios in which the frequency of rare hazards is increased by orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.