Abstract

Cell division tracking using fluorescent dyes, such as carboxyfluorescein diacetate succinimidyl ester, provides a unique opportunity for analysis of cell growth kinetics. The present review article presents new methods for enhancing resolution of division tracking data as well as derivation of quantities that characterize growth from time-series data. These include the average time between successive divisions, the proportion of cells that survive and the proliferation per division. The physical significance of these measured quantities is interpreted by formulation of a two-compartment model of cell cycle transit characterized by stochastic and deterministic cell residence times, respectively. The model confirmed that survival is directly related to the proportion of cells that enter the next cell generation. The proportion of time that cells reside in the stochastic compartment is directly related to the proliferation per generation. This form of analysis provides a starting point for more sophisticated physical and biochemical models of cell cycle regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.