Abstract
SummaryThis article concerns a class of generalized linear mixed models for two-level grouped data, where the random effects are uniquely indexed by groups and are independent. We derive necessary and sufficient conditions for the marginal likelihood to be expressed in explicit form. These models are unified under the conjugate generalized linear mixed models framework, where conjugate refers to the fact that the marginal likelihood can be expressed in closed form, rather than implying inference via the Bayesian paradigm. The proposed framework allows simultaneous conjugacy for Gaussian, Poisson and gamma responses, and thus can accommodate both unit- and group-level covariates. Only group-level covariates can be incorporated for the binomial distribution. In a simulation of Poisson data, our framework outperformed its competitors in terms of computational time, and was competitive in terms of robustness against misspecification of the random effects distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.