Abstract
AbstractHarmonized atmospheric 222Rn observations are required by the scientific community: these data have been lacking in southern Europe. We report on three recently established ground‐based atmospheric 222Rn monitoring stations in Spain. We characterize the variability of atmospheric 222Rn concentrations at each of these stations in relation to source strengths, local, and regional atmospheric processes. For the study, measured atmospheric 222Rn concentrations, estimated 222Rn fluxes, and regional footprint analysis have been used. In addition, the atmospheric radon monitor operating at each station has been compared to a 222Rn progeny monitor. Annual means of 222Rn concentrations at Gredos (GIC3), Delta de l'Ebre (DEC3), and Huelva (UHU) stations were 17.3 ± 2.0 Bq m−3, 5.8 ± 0.8 Bq m−3, and 5.1 ± 0.7 Bq m−3, respectively. The GIC3 station showed high 222Rn concentration differences during the day and by seasons. The coastal station DEC3 presented background concentrations typical of the region, except when inland 222Rn‐rich air masses are transported into the deltaic area. The highest 222Rn concentrations at UHU station were observed when local recirculation facilitates accumulation of 222Rn from nearby source represented by phosphogypsum piles. Results of the comparison performed between monitors revealed that the performance of the direct radon monitor is not affected by meteorological conditions, whereas the 222Rn progeny monitor seems to underestimate 222Rn concentrations under saturated atmospheric conditions. Initial findings indicate that the monitor responses seem to be in agreement for unsaturated atmospheric conditions but a further long‐term comparison study will be needed to confirm this result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.