Abstract

Ground penetrating radar (GPR), as a kind of fast, effective, and nondestructive tool, has been widely applied to nondestructive testing of road quality. The finite-difference time-domain method (FDTD) is the common numerical method studying the GPR wave propagation law in layered structure. However, the numerical accuracy and computational efficiency are not high because of the Courant-Friedrichs-Lewy (CFL) stability condition. In order to improve the accuracy and efficiency of FDTD simulation model, a parallel conformal FDTD algorithm based on graphics processor unit (GPU) acceleration technology and surface conformal technique was developed. The numerical simulation results showed that CUDA-implemented conformal FDTD method could greatly reduce computational time and the pseudo-waves generated by the ladder approximation. And the efficiency and accuracy of the proposed method are higher than the traditional FDTD method in simulating GPR wave propagation in two-dimensional (2D) complex underground structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.