Abstract

Glycosphingolipids (GSLs) are ubiquitous glycoconjugates of cell membranes. Identification of unknown GSL-glycan structures is still a major challenge. To address this challenge, we developed a novel strategy for analysis of GSL-glycans from cultured cells based on a lectin microarray that can directly detect and reveal glycopatterns of GSL extracts without the need for glycan release. There were six steps to perform the analysis of GSL-glycans: (i) extraction of GSLs from cell pellets, (ii) quantification of GSL-glycans using orcinol-sulfuric acid reaction, (iii) preparation of lyso-GSLs by using sphingolipid ceramide N-deacylase, (iv) fluorescence labeling of lyso-GSLs, (v) detection by a lectin microarray, (vi) data acquisition and analysis. Simultaneously, a supplementary verification analysis for GSL-glycans was performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Optimized experimental conditions, which consisted of the blocking buffer, incubation buffer, and appropriate GSL concentration, were investigated by analyzing the glycopatterns of a standard ganglioside (GM1a) via lectin microarray. The analysis of GSL-glycans from human hepatocarcinoma cell lines (MHCC97L, MHCC97H, and HCCLM3) showed that there were 27 lectins (e.g., WFA, MAL-II, and LTL) to give significantly different signals compared with a normal human liver cell line (HL-7702), indicating up- and/or down-regulations of corresponding glycopatterns such as α1-2 fucosylation and α2-3 sialylation, and changes of certain glycostructures such as Galβ1-3GalNAcβ1-4(NeuAcα2-3)Galβ1-4Glc:Cer and GalNAcα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-3Galβ1-4Glc:Cer. The lectin microarray analysis of lyso-GSLs labeled by fluorescence has proven to be credible, which can provide the glycopatterns and detailed linkage information on GSL-glycans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.