Abstract

Two methods for monosaccharide analysis by capillary electrophoresis (CE) using counterelectroosmotic and coelectroosmotic modes with indirect laser-induced fluorescence detection were optimised and compared. A mixture of seven glycosaminoglycan-derived hexoses was separated in alkaline fluorescein-based electrolytes and detected in both counterelectroosmotic and coelectroosmotic conditions. The fluorescein concentration and pH of the background electrolyte, and the influence of the reversal of electroosmotic flow by addition of hexadimethrine bromide on the separation were studied. Coelectroosmotic CE conditions provided better resolution and limits of detection. A 10 −6 M fluorescein solution at pH 12.25 containing 0.0005% (w/v) hexadimethrine bromide was used as background electrolyte. Quality parameters such as run-to-run, day-to-day precision and limits of detection were calculated, and better figures of merit were obtained for the coelectrooosmotic conditions than for the counterelectroosmotic mode. The coelectroosmotic method was applied to the quantitation of the hexosamine contents in glycosaminoglycans after acid hydrolysis. The method proved to be suitable for the determination of dermatan sulfate in heparin down to 2% (w/w).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call