Abstract

BackgroundProtein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method.MethodsMethanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures.ResultsHigh molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts.ConclusionsMethanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-015-0689-1) contains supplementary material, which is available to authorized users.

Highlights

  • Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications

  • Detection of glycation induced protein cross-linking SDS-PAGE of aliquots collected at various intervals of incubation in the presence or absence of plant extracts were compared

  • High molecular weight protein products were formed when lysozyme was incubated with fructose (Figs. 1, 2, 3, 4, 5)

Read more

Summary

Introduction

Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Over a period of time, glycation products form a complex family of stable heterogeneous group of compounds called advanced glycation end-products (AGEs) causing irreversible structural and functional damage to the affected protein molecules. Perera and Handuwalage BMC Complementary and Alternative Medicine (2015) 15:175 pathways, AGEs result in endothelial dysfunction leading to vasoconstriction, change in the endothelial surface in to a procoagulant surface, chemotaxis of macrophages and increased phagocytosis of modified lipids culminating in the formation of atherosclerotic plaques leading to macrovascular complications. Interaction of AGEs with receptors for advanced glycation end products (RAGE) induces the synthesis and release of cytokines which mediate enhanced production of collagen, laminin, and fibronectin leading to fibrosis [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call