Abstract

Gloss is associated significantly with material appearance, and observers often focus on gloss unevenness. Gloss unevenness is the intensity distribution of reflected light observed within a highlight area, that is, the variability. However, it cannot be analyzed easily because it exists only within the highlight area and varies in appearance across the reflection angles. In recent years, gloss has been analyzed in terms of the intensity of specular reflection and its angular spread, or the bidirectional reflectance distribution function (BRDF). In this study, we develop an apparatus to measure gloss unevenness that can alter the angle with an angular resolution of 0.02°. Additionally, we analyze the gloss unevenness and BRDF in terms of specular reflection. Using a high angular resolution, we measure and analyze high-gloss materials, such as mirrors and plastics, and glossy materials, such as photo-like inkjet paper and coated paper. Our results show that the magnitude of gloss unevenness is the largest at angles marginally off the center of the specular reflection angle. We discuss an approach for physically defining gloss unevenness based on the BRDF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.