Abstract

Abstract. The global methane (CH4) growth rate showed large variations after the eruption of Mount Pinatubo in June 1991. Both sources and sinks of tropospheric CH4 were altered following the eruption, by feedback processes between climate and tropospheric photochemistry. Such processes include Ultra Violet (UV) radiative changes due to the presence of volcanic sulfur dioxide (SO2) and sulphate aerosols in the stratosphere, and due to stratospheric ozone depletion. Changes in temperature and water vapour in the following years caused changes in tropospheric chemistry, as well as in natural emissions. We present a sensitivity study that investigates the relative effects that these processes had on tropospheric CH4 concentrations, using a simple one-dimensional chemistry model representative for the global tropospheric column. To infer the changes in UV radiative fluxes, the chemistry model is coupled to a radiative transfer model. We find that the overall effect of natural processes after the eruption on the CH4 growth rate is dominated by the reduction in CH4 lifetime due to stratospheric ozone depletion. However, all the other processes are found to have non-negligible effects, and should therefore be taken into account in order to obtain a good estimate of CH4 concentrations after Pinatubo. We find that the overall effect was a small initial increase in the CH4 growth rate after the eruption, followed by a decrease of about 7 ppb yr−1 by mid-1993. When changes in anthropogenic emissions are employed according to emission inventories, an additional decrease of about 5 ppb yr−1 in the CH4 growth rate is obtained between the years 1991 and 1993. The results using the simplified single column model are in good qualitative agreement with observed changes in the CH4 growth rate. Further analysis, taking into account changes in the dynamics of the atmosphere, variations in emissions from biomass burning, and in biogenic emissions of non-methane volatile organic compounds (NMVOC), requires the use of a full three-dimensional model.

Highlights

  • Geoscientific CgaHs4inisththeeastemcooMsnpdhomerdoeesatflatebDrunCedOva2ne.t lIaotnstpchomronpceoengntertnaitciognreinenthhoeuaste-M dimensional chemistry model representative for the global mosphere has increased since preindustrial times by a factropospheric column

  • We find that the overall effect of natural processes after the eruption on the CH4 growth rate is dominated by the reduction in CH4 lifetime due to stratospheric ozone depletion

  • We acknowledge that our model is simplified and difficult to apply in a globally-averaged fashion, it allowed us to quantify for the first time the combined effect of radiation and temperature-related effects after the Pinatubo eruption on the CH4 growth rate, including feedbacks on the CH4 lifetime

Read more

Summary

Methods and

We present a sensitivity study that investigates the relative effects that these processes had on tropospheric CH4 concentrations, using a simple one-

Introduction
Model setup
The column chemistry model
Photolysis frequencies
Emissions and atmospheric parameters
Implementation of Pinatubo perturbations
Methyl chloroform model
Model evaluation
Model sensitivities
Evaluation of CH4 and methyl chloroform concentrations
Steady-state perturbations
Evolution of transient concentrations and growth rate
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call