Abstract
Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.
Highlights
Plants are sessile organisms that have evolved an exceptional ability to perceive, respond, and adapt to their environment
We found that the modules up-regulated by salt and drought fell into unique gene ontology (GO) categories, whereas cold stress up-regulated transcription factor (TF) expression, and heat stress increased expression of genes involved in stabilizing protein folding, respectively
Overall Differential Expression Analysis Drought, high-salinity, cold, and heat are four important abiotic stresses that adversely affect the productivity of plants
Summary
Plants are sessile organisms that have evolved an exceptional ability to perceive, respond, and adapt to their environment. Transcription factors in turn activate expression of stress responsive genes This begins the second phase and elicits physiological changes necessary to survive the particular environmental stress (reviewed in [13]). The genes expressed and subsequent physiological changes induced during the second phase are dependent upon the particular abiotic stress encountered. These changes can include modifications to cell membrane components – resulting in changes in membrane fluidity [17], stomatal closure [18], decreased photosynthetic activity [19,20], and increased production of heat shock proteins (HSPs) or dehydrin cryoprotectants [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.