Abstract

The North-Eastern region (NER) of India, comprising of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura, is a hot spot for genetic diversity and the most probable origin of rice. North-east rice collections are known to possess various agronomically important traits like biotic and abiotic stress tolerance, unique grain and cooking quality. The genetic diversity and associated population structure of 6,984 rice accessions, originating from NER, were assessed using 36 genome wide unlinked single nucleotide polymorphism (SNP) markers distributed across the 12 rice chromosomes. All of the 36 SNP loci were polymorphic and bi-allelic, contained five types of base substitutions and together produced nine types of alleles. The polymorphic information content (PIC) ranged from 0.004 for Tripura to 0.375 for Manipur and major allele frequency ranged from 0.50 for Assam to 0.99 for Tripura. Heterozygosity ranged from 0.002 in Nagaland to 0.42 in Mizoram and gene diversity ranged from 0.006 in Arunachal Pradesh to 0.50 in Manipur. The genetic relatedness among the rice accessions was evaluated using an unrooted phylogenetic tree analysis, which grouped all accessions into three major clusters. For determining population structure, populations K = 1 to K = 20 were tested and population K = 3 was present in all the states, with the exception of Meghalaya and Manipur where, K = 5 and K = 4 populations were present, respectively. Principal Coordinate Analysis (PCoA) showed that accessions were distributed according to their population structure. AMOVA analysis showed that, maximum diversity was partitioned at the individual accession level (73% for Nagaland, 58% for Arunachal Pradesh and 57% for Tripura). Using POWERCORE software, a core set of 701 accessions was obtained, which accounted for approximately 10% of the total NE India collections, representing 99.9% of the allelic diversity. The rice core set developed will be a valuable resource for future genomic studies and crop improvement strategies.

Highlights

  • Plant genetic resources are of paramount importance for the future and to ensure the food and nutritional security of an increasing population

  • Plant materials A total of 6,984 accessions of NE India (Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura,) were drawn from National Genebank (NGB), National Bureau of Plant Genetic Resources (NBPGR), New Delhi

  • Alleles generated with all 36 single nucleotide polymorphism (SNP) markers were scored to study the genetic diversity

Read more

Summary

Introduction

Plant genetic resources are of paramount importance for the future and to ensure the food and nutritional security of an increasing population. Core germplasm development has been proposed for better management and use of collections available in Genebank [1]. This requires the development of a core set of accession to more precisely characterize, explore, and conserve Genebank resources, monitor the genetic drift during preservation, and identify gaps in genetic diversity [2,3]. A core set is a small set of accessions (usually 10 % of the population) chosen to represent the genetic spectrum of an entire collection [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call