Abstract

The faithful translation of the genetic code requires the highly accurate aminoacylation of transfer RNAs (tRNAs). However, it has been shown that nematode-specific V-arm-containing tRNAs (nev-tRNAs) are misacylated with leucine in vitro in a manner that transgresses the genetic code. nev-tRNAGly (CCC) and nev-tRNAIle (UAU), which are the major nev-tRNA isotypes, could theoretically decode the glycine (GGG) codon and isoleucine (AUA) codon as leucine, causing GGG and AUA codon ambiguity in nematode cells. To test this hypothesis, we investigated the functionality of nev-tRNAs and their impact on the proteome of Caenorhabditis elegans. Analysis of the nucleotide sequences in the 3’ end regions of the nev-tRNAs showed that they had matured correctly, with the addition of CCA, which is a crucial posttranscriptional modification required for tRNA aminoacylation. The nuclear export of nev-tRNAs was confirmed with an analysis of their subcellular localization. These results show that nev-tRNAs are processed to their mature forms like common tRNAs and are available for translation. However, a whole-cell proteome analysis found no detectable level of nev-tRNA-induced mistranslation in C. elegans cells, suggesting that the genetic code is not ambiguous, at least under normal growth conditions. Our findings indicate that the translational fidelity of the nematode genetic code is strictly maintained, contrary to our expectations, although deviant tRNAs with misacylation properties are highly conserved in the nematode genome.

Highlights

  • The translation of genes into proteins is based on the genetic code, a set of essential rules for living cells

  • Nev-transfer RNAs (tRNAs) have unusual structural and aminoacyl properties that are inconsistent with the universal rules, it is unclear whether they are processed normally for translation like common tRNAs and whether they function in protein synthesis in vivo, which would confirm the ambiguity of the nematode genetic code

  • TRNAGly (UCC) and tRNAIle (UAU), which are the cognate tRNAs of nevtRNAGly (CCC) and nev-tRNAIle (UAU), were used as the positive controls to test for GGG and AUA codon ambiguity in nematode cells

Read more

Summary

Introduction

The translation of genes into proteins is based on the genetic code, a set of essential rules for living cells. Nev-tRNAs have unusual structural and aminoacyl properties that are inconsistent with the universal rules, it is unclear whether they are processed normally for translation like common tRNAs and whether they function in protein synthesis in vivo, which would confirm the ambiguity of the nematode genetic code.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.