Abstract

The hindguts of wood-feeding termites are the sites of intense, CO2-reductive acetogenesis. This activity profoundly influences host nutrition and methane emissions. Homoacetogens previously isolated from diverse termites comprised novel taxa belonging to two distinct bacterial phyla, Firmicutes and Spirochates. Little else is known about either the diversity or abundance of homoacetogenic species present in any given termite or the genetic details underlying CO2-reductive acetogenesis by Spirochaetes. A key enzyme of CO2-reductive acetogenesis is formyltetrahydrofolate synthetase (FTHFS). A previously designed primer set was used to amplify FTHFS genes from three isolated termite-gut spirochaetes. Sequencing DNA flanking the FTHFS gene of Treponema strain ZAS-2 revealed genes encoding two acetogenesis-related enzymes, methenyltetrahydrofolate cyclohydrolase and methylenetetrahydrofolate dehydrogenase. Although termite-gut spirochaetes are only distantly related to clostridia at the ribosomal level, their tetrahydrofolate-dependent enzymes appear to be closely related. In contrast, homologous proteins identified in the non-homoacetogenic oral spirochaete Treponema denticola were only distantly related to those from clostridia and the termite-gut treponemes. Having demonstrated their utility with spirochaete pure cultures, the FTHFS primers were used to construct a 91-clone library from the termite-gut community DNA. From this, 19 DNA and eight amino acid FTHFS types were identified. Over 75 % of the retrieved clones formed a novel, coherent cluster with the FTHFS homologues obtained from the termite-gut treponemes. Thus, FTHFS gene diversity in the gut of the termite Zootermopsis angusticollis appears to be dominated by spirochaetes. The homoacetogenic capacity of termite-gut spirochaetes may have been acquired via lateral gene transfer from clostridia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.