Abstract
The weighted ℓ1−2 minimization has recently attracted some attention due to its capability to deal with highly coherent matrices. Notwithstanding the availability of its stable recovery guarantees, there appear to be some issues not addressed in the literature, which are (i). convergence of the solver for the weighted ℓ1−2 minimization analytically, and (ii). detailed analysis of relevance of general weights to applications. While establishing the convergence of the solver of the weighted ℓ1−2 minimization, we demonstrate the significance of general weights, w∈(0,1), empirically through some applications, including the reconstruction of magnetic resonance images. In particular, we show that the general weights attain significance when we do not have fully accurate or fully corrupt information about the support of the signal to be reconstructed from its linear measurements. We conclude the work by discussing a numerical scheme that chooses the partial support and the weights iteratively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.