Abstract
Traditional interferometric synthetic aperture radar (InSAR) is based on broadside looking geometry and parallel tracks. With the increase of the orbit height in spaceborne SAR and the development of SAR constellations, InSAR data of a region can be acquired in complex geometry, especially squint beam steering and unparallel tracks. For the sake of optimal InSAR system design and data processing, it is necessary to model the geometric decorrelation in complex geometry. This letter derives an accurate analytical model of geometric decorrelation of SAR interferometric pairs for general SAR observation geometry. Nonidentity of impulse responses and nonorthogonal sidelobes are the main features hindering the model derivation in the complex geometry case. An impulse response-fitting method is proposed, where nonorthogonal bases are adopted to suit the features and, thus, accurately analyze the geometric decorrelation. Simulation results verify the analytical model. It is found that unparallel tracks will introduce an extra geometric decorrelation factor. Compared to cases of parallel tracks, unparallel tracks always worsen the geometric decorrelation and cannot be neglected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.