Abstract

In order to define the undifferentiated transcriptional factors present in neurogenesis of pancreatic β-islet cells, we studied the effect of Pdx1 in embryonic stem cell derived endocrine lineage. There are undifferentiated transcriptional progenitors Pdx1+/Ptf1a+/Cpa1+ tracking the growth of acini, ducts, α and β-islet cells. The upregulated transcriptional factors Pdx1 and ngn3 specify consequences of cell cycle regulation in early gut endocrine cells. The undifferentiated transcriptional factors basic helix loop helix (bHLH) protein regulate Ptf1a+/Cpa1+ in acini, ducts and it also regulate ngn3 to decrease expression of insulin and other pancreas secretions. The Pdx1+ and other unknown gene mutations show abnormal growth of neurogenesis in endocrine lineages. Using microarray based gene expression analysis to determine undifferential gene ontology in tissue specific gene regulation and disease progression that common in both metabolic and biological signaling pathways. The data expression profiles of ngn3 of wild- type pancreatic islet and islet derived tumor stem cells provide information on endocrine specific ngn3 genes. Therefore, 3755 genes were significantly regulated by Ngn3 induced pancreatic islet cell development. Moreover 317 upregulated and 175 downregulated, 757 genes deemed as undifferential expressions in endocrine cell. Furthermore to predict signaling pathways that associates with diabetes is highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.