Abstract
Summary The root-knot nematode, Meloidogyne incognita, is a destructive pathogen with a broad host range, causing serious damage to cucumber globally. Synthetic chemical nematicides are effective for controlling nematodes but they pose harmful effects on the environment and human beings. Thus, the development of natural plant defence mechanisms to contribute resistance to M. incognita is a potentially eco-friendly alternative. In recent decades, the biocontrol activity of P. chrysogenum against various pests and pathogens has been investigated in a variety of plants. The present study aimed to understand the molecular mechanisms of induced resistance by P. chrysogenum strain Snef1216 against M. incognita through its use as seed coating. The expression of 80 genes in roots of cucumber, Cucumis sativus, at four different infection time intervals was examined. Genes belonging to defence, signal transduction, growth, binding and transportation, secondary metabolism, transcription factor, cell death, oxidoreductases and cell wall modification categories were selected and examined with specific primers via RT-qPCR. The greater expression of defence-related or other vital genes demonstrated that P. chrysogenum strain Snef1216 induced priming of defence and plant growth-promoting responses. These data could contribute to breeding new nematode-resistant and biomass-enhancing cultivars of cucumber. Overall, application of P. chrysogenum strain Snef1216 may be a potential alternative to chemical nematicides as part of a future more effective management strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.