Abstract

Soil salinity is an increasing problem facing agriculture in many parts of the world. Climate change and irrigation practices have led to decreased yields of some farmland due to increased salt levels in the soil. Plants that have tolerance to salt are thus needed to feed the world’s population. One approach addressing this problem is genetic engineering to introduce genes encoding salinity, but this approach has limitations. Another fairly new approach is the isolation and development of salt-tolerant (halophilic) plant-associated bacteria. These bacteria are used as inoculants to stimulate plant growth. Several reports are now available, demonstrating how the use of halophilic inoculants enhance plant growth in salty soil. However, the mechanisms for this growth stimulation are as yet not clear. Enhanced growth in response to bacterial inoculation is expected to be associated with changes in plant gene expression. In this review, we discuss the current literature and approaches for analyzing altered plant gene expression in response to inoculation with halophilic bacteria. Additionally, challenges and limitations to current approaches are analyzed. A further understanding of the molecular mechanisms involved in enhanced plant growth when inoculated with salt-tolerant bacteria will significantly improve agriculture in areas affected by saline soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.