Abstract

The impact of transfer batching (also referred to as lot splitting) on the performance of flowshops has received widespread attention in the literature. Most papers have emphasized the usefulness of lot splitting in cutting down average flow times, as it enables the overlapping of operations at different stages of the flowshop. However, while most analytical papers have studied deterministic flowshops, an important downside of lot splitting has been overlooked; i.e., the occurrence of idle time between the processing of consecutive sublots belonging to the same process batch (referred to as gap times). Gap times add no value to the product; they merely increase the process batch makespan at the different stages. In deterministic systems, these gap times may be avoided by balancing the processing rates of the different machines in the shop; in stochastic settings, however, they may occur even when the system is perfectly balanced, due to the inherent variability in the setup and processing times. Studying a two-stage flowshop with a single product type, this paper provides insight into the behavior of the gap times, and develops an approximation for the process batch makespan at the second stage in terms of the system characteristics and the lot splitting policy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.