Abstract

The use of partially filled high porosity graded aluminum and copper foams is explored to satisfy both heat transfer and pressure drop in a heat exchanger. Both positive and negative orientations are accomplished for the enhancement of heat transfer with reduction in the pressure drop. The present research includes three different configurations M1, M2 and M3 (porous layer inner diameter = 0.06 m, 0.04 m, and 0.02 m, respectively, while outer diameter = 0.10 m) partially filled with positive (i.e., increasing, 20/45 PPI) negative (i.e., decreasing, 45/20 PPI) and compound (i.e., 45 Cu/20 Al PPI) graded porous layer thickness. Each configuration involves three different graded porous layer to present the optimum graded porous layer thickness. The thermo-hydrodynamic characteristics are apprehended by using Darcy Extended Forchheimer (DEF) flow and local thermal non-equilibrium (LTNE) models for the partially filled graded porous structure and k-ω turbulence model is accomplished in open passage flow of the conduit. The decreasing graded foam located inside the models M1 and M2 performed 1.68%–12.85% and 13.42%–23.32% higher heat transfer rate compared to without graded metal foam of models M2 and M3, respectively accompanied with 55.43%–84.02% and 35.69%–50.31% lesser pumping power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call