Abstract

Sound propagation through periodic arrangement of scatterers lead to formation of bands of frequencies, known as band gaps, where sound cannot propagate though the structure. We propose a method based on Webster horn equation, along with Floquet theorem, to predict the band gap of a one-dimensional periodic structure made of hard sound-scatterers. The method is further modified to obtain the complex wave numbers, which give the decay constants. The decay constant is used to predict the sound attenuation of the evanescent wave in the finite sonic crystal. The theoretical prediction is verified with experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.