Abstract

Freezing in an eccentric annulus is investigated numerically by using a temperature transforming model. Since the effect of the heat conduction along the circular direction on the growth of the freezing layer is very small, an analytical solution by employing integral approximate method is proposed. The freezing rate obtained by the analytical solution agreed very well with that of the numerical solution, although the analytical solution is much simpler than the numerical solution. The effects of the eccentric annulus geometric structure on the freezing process is also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.