Abstract
Recently, Atangana proposed new operators by combining the fractional and fractal calculus. These recently proposed operators, referred to as fractal-fractional operators, have been widely used to study the complex dynamics of a problem. Cancer is a prevalent disease today and is difficult to cure. The immune system tends to fight it as cancer sets up in the body. In this manuscript, the novel operators have been used to analyze the relationship between the immune system and cancer cells. The tumor-immune model has been studied qualitatively and quantitatively via Atangana-Baleanu fractal-fractional operator. The existence and uniqueness results of the model under Atangana-Baleanu fractal-fractional operator have proved through fixed point theorems. The Ulam-Hyres stability for the model has derived through non-linear analysis. Numerical results have developed through Lagrangian-piece wise interpolation for the different fractal-fractional operators. To visualize the relationship between immune cells and cancers cells under novel operators in a various sense, we simulate the numerical results for the different sets of fractional and fractal orders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.