Abstract

A mathematical model is developed and utilized to demonstrate the enhanced forced response behavior associated with aerodynamic, structural, and combined aerodynamic-structural detuning of a loaded rotor operating in an incompressible flow field. The unsteady aerodynamic gust response and oscillating cascade aerodynamics are determined by developing both a complete first-order unsteady aerodynamic analysis and a locally analytical solution in individual grid elements of a body fitted computational grid. The aerodynamic detuning is accomplished by means of alternate circumferential airfoil spacing, with alternate blade structural detuning also considered. The beneficial forced response effects of these detuning techniques are then demonstrated by applying this model to various detuned rotor configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.