Abstract
Abstract Tensegrity parallel mechanisms is a novel spatial structure composed of cable-based and rigid-based chains, which is characterized by lightweight, multi-stability, high precision, good stiffness, and high load-bearing capacity. This paper focuses on the six-degree-of-freedom tensegrity parallel mechanism, analyzing its static equilibrium and presenting the force equilibrium equations. A model for cable tension distribution optimization is established, utilizing different P-norm objective functions to optimize the distribution of tension in cables and rigid links, discussing the reasons for unreasonable tensions in the system. Under given constraints on the motion pairs of the mechanism, the workspace of the mechanism is plotted, and factors influencing the size of the workspace are analyzed. Finally, the singularity of the mechanism is addressed based on the Jacobian matrix, demonstrating the feasibility of reaching the space volume by the mechanism. It has certain reference significance for the configuration theory and analysis methods of tensegrity parallel mechanisms and rigid-flexible coupling mechanisms, and provides a reference for the further promotion and application of mechanisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.