Abstract
The slowly varying drift poses a major problem in the analysis of functional magnetic resonance imaging (fMRI) data. In this paper, based on the observation that noise in fMRI is long memory fractional noise and the slowly varying drift resides in a subspace spanned only by large scale wavelets, we examine a modified general linear model (GLM) in wavelet domain under Bayesian framework. This modified model estimates the activation parameters at each scale of wavelet decomposition. Then, a model selection criterion based on the results from the modified scheme is proposed to model the drift. Results obtained from simulated as well as real fMRI data show that the proposed Bayesian estimator can accurately capture the noise structure, and hence, result in robust estimation of the parameters in GLM. Besides, the proposed model selection criterion works well and could efficiently remove the drift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.