Abstract

AbstractWe explore the issue of fault reactivation induced in enhanced geothermal systems by fluid injection. Specifically, we investigate the role of late stage activation by thermal drawdown. A Thermal‐Hydrological‐Mechanical simulator incorporating a ubiquitous joint constitutive model is used to systematically simulate the seismic slip of an embedded critically stressed strike‐slip fault. We examine the effects of both pore pressure perturbation and thermal shrinkage stress on the magnitude of the resulting events and timing. We analyze the sensitivity of event magnitude and timing to changes in the permeability of the fault and fractured host, fracture spacing, injection temperature, and fault stress obliquity. From this we determine that (1) the fault permeability does not affect the timing of the events nor their size, since fluid transmission and cooling rate are controlled by the permeability of the host formation. (2) When the fractured medium permeability is reduced (from 10−13 to 10−16 m2), the timing of the event is proportionately delayed (by a corresponding 3 orders of magnitude). (3) Injection temperature only influences the magnitude but not the timing of the secondary thermal event. The larger the temperature differences between that of the injected fluid and the ambient rock, the larger the magnitude of the secondary slip event. (4) For equivalent permeabilities, changing the fracture spacing (10 m‐50 m‐100 m) primarily influences the rate of heat energy transfer and thermal drawdown within the reservoir. Smaller spacing between fractures results in more rapid thermal recovery but does not significantly influence the timing of the secondary thermal rupture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.