Abstract
This work focuses on the evolution of a free plane laminar jet in the near-nozzle region. The jet is buoyant because it is driven by a continuous addition of both buoyancy and momentum at the source. Buoyancy is given by a temperature difference between the jet and the environment. To study the jet evolution, numerical simulations were performed for two Richardson numbers: the one corresponding to a temperature difference slightly near the validity of the Boussinesq approximation and the other one corresponding to a higher temperature difference. For this purpose, a time dependent numerical model is used to solve the fully dimensional Navier-Stokes equations. Density variations are given by the ideal gas law and flow properties as dynamic viscosity and thermal conductivity are considered nonconstant. Particular attention was paid to the implementation of the boundary conditions to ensure jet stability and flow rates control. The numerical simulations were also reproduced by using the Boussinesq approximation to find out more about its pertinence for this kind of flows. Finally, a stability diagram is also obtained to identify the onset of the unsteady state in the near-nozzle region by varying control parameters of momentum and buoyancy. It is found that, at the onset of the unsteady state, momentum effects decrease almost linearly when buoyancy effects increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.