Abstract

Abstract The dual coolant lithium lead (DCLL) is a candidate to be an effective breeding blanket (BB) concept for nuclear fusion technologies. One critical point of this design is the magnetohydrodynamic (MHD) effects involving Lorentz damping force which produces relevant pressure drop in the eutectic flow. In the framework of the European DEMO, the application of sandwich-like steel–alumina–steel flow channel insert (FCI) seems to be the best solution to reduce the pressure drop by electrically decoupling the liquid PbLi from the Eurofer walls. The impact of the FCI on the PbLi velocity profile is analyzed in this work with a CFD solver implemented on OpenFOAM. Under the assumption of non-buoyant fully developed channel flow the temperature map in the channel is computed. Based on the temperature field, the induced deformation is evaluated. The effects of the FCI deformation and possible rupture of the FCI on the velocity profile and on the corresponding pressure drop are then parametrically investigated. Results show that the deformation of the FCI and the possible break in the Hartmann wall do not lead to significant variations in the pressure drop from the case of intact FCI in a wide range of interaction parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call