Abstract

Statement of problemResearch evaluating load-to-failure of pressed lithium disilicate glass-ceramic (LDGC) with a clinically validated test after adjustment and repair procedures is scarce. PurposeThe purpose of this in vitro study was to investigate the effect of the simulated chairside adjustment of the intaglio surface of monolithic pressed LDGC and procedures intended to repair damage. Material and methodsA total of 423 IPS e.max Press (Ivoclar Vivadent AG) disks (15 mm diameter, 1 mm height) were used in the study. The material was tested by using an equibiaxial loading arrangement (n≥30/group) and a contact pressure test (n≥20/group). Specimens were assigned to 1 of 14 groups. One-half was assigned to the equibiaxial load test and the other half underwent contact pressure testing. Testing was performed in 2 parts, before glazing and after glazing. Before-glazing specimens were devested and entered in the test protocol, while after-glazing specimens were devested and glazed before entering the test protocol. Equibiaxial flexure test specimens were placed on a ring-on-ring apparatus and loaded until failure. Contact pressure specimens were cemented to epoxy resin blocks with a resin cement and loaded with a 50-mm diameter hemisphere until failure. Tests were performed on a universal testing machine with a crosshead speed of 0.5 mm/min. Weibull statistics and likelihood ratio contour plots determined intergroup differences (95% confidence bounds). ResultsBefore glazing, the equibiaxial flexural strength test and the Weibull and likelihood ratio contour plots demonstrated a significantly higher failure strength for 1EC (188 MPa) than that of the damaged and/or repaired groups. Glazing following diamond-adjustment (1EGG) was the most beneficial post-damage procedure (176 MPa). Regarding the contact pressure test, the Weibull and likelihood ratio contour plots revealed no significant difference between the 1PC (98 MPa) and 1PGG (98 MPa) groups. Diamond-adjustment, without glazing (1EG and 1PG), resulted in the next-to-lowest equibiaxial flexure strength and the lowest contact pressure. After glazing, the strength of all the groups, when subjected to glazing following devesting, increased in comparison with corresponding groups in the before-glazing part of the study. ConclusionsA glazing treatment improved the mechanical properties of diamond-adjusted IPS e.max Press disks when evaluated by equibiaxial flexure and contact pressure tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.