Abstract

An FEM simulation utilizing a dynamic explicit code was conducted to investigate the flange wrinkle behavior of square shell deep drawing of anisotropic steel sheets. In the FEM simulation, anisotropy of the r-value is taken account of by using the Barlat–Lian '89 equation. The yield locus diagram and the influence of anisotropy were investigated by changing the combination of the R00, R45 and R90 value. One quarter portion of the 75 mm square punch and 80 mm square die was used in the simulation and frictional coefficient μ=0 (Teflon lubricant condition) was adopted. As a result, the greater the m-value of the yield locus, the greater the yield stress (YS) and the greater the ΔCL value (R90–R00)/Rave become, the bigger the flange wrinkle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call