Abstract

In this study, the novel conservative representation of chemical explosive mode analysis is augmented to analyze the key flame features in the Burrows-Kurkov flames simulated by both Reynolds-Averaged Navier-Stokes (RANS) and large eddy simulation (LES). Subtle difference are revealed in flame stabilization mechanisms resulting from the difference in modeling and spatial resolution. RANS shows that, ahead of the flame onset location, the composition diffusion and shock wave compression play dominant roles in chemical explosion indicating that the flame is stabilized by the assisted-ignition combustion mode. In contrast, LES shows that the flame is stabilized by the auto-ignition mode since the nonchemical contribution counteracts chemical reaction during the development of ignited flame kernels. For RANS, the radical pool builds up through the unphysical back diffusion near the flame stabilization front, which reveals the limitation of RANS method in the resolution and characterization of the key flame features in Burrows-Kurkov flames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.