Abstract

BackgroundRecent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated.ResultsWe analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10− 8 – 1.33 × 10− 8, 1.0 × 10− 9 – 2.9 × 10− 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples.ConclusionOur study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.

Highlights

  • Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations

  • We present the variant catalogue of five native trios from Peninsular Malaysia (OA, including Bateq, Mendriq and Semai) and North Borneo (NB, including Dusun and Murut) by whole-genome sequencing to a mean depth of 30×

  • Comparing across the native Malaysian populations, we found that Orang Asli (OA) populations harbored more novel variants than North Bornean (NB) populations did on both population (1.0– 1.6% of Single nucleotide variant (SNV) and 1.4–1.7% of indels in OA; 0.5% of SNVs and 1.2% of indels in NB) and individual (0.7– 1.2% of SNVs and 1.2–1.5% of indels in OA; 0.3% of SNVs and 1.1% of indels in NB) levels (Table 1; Fig. 1b; Additional file 1: Table S5-S6)

Read more

Summary

Introduction

Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. A major undertaking of these projects is to conduct a comprehensive inventory of all detectable variations of global modern human populations, which is important for characterizing the human genetic diversity as well as identifying disease risk variants. The fine-scale analyses of the human genome require accurate identification of variants, imputation and phasing of genotypes, which may be greatly facilitated by increasing the sequencing depth and using pedigree information, especially for genomic regions containing large and complex variations like structural variants (SVs) and small insertions and deletions (indels) [5]. Wholegenome sequencing studies of healthy trios are less biased than those of the disease-based ones, but publications on these are rather limited, except for the one Vietnamese trio and 10 Danish trios that were sequenced to high coverage in recent years [14, 15]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.