Abstract

The particles used in magnetorheological polishing (MRP) fluid are the key components of the magnetorheological (MR) finishing processes. The rotational magnetorheological honing (R-MRH) process is recently developed as a highly productive MR finishing process which is used for finishing the internal surface of the industrial cylindric components. The involvement of micron-sized abrasive particles of MRP fluid in the finishing operation results in the invisible observation of the finishing mechanism which enables the urge of analyzing the motion of the particles during the present R-MRH process. Therefore, the effect of motions of the MRP-fluid’s particles is analyzed for nano-finishing performance on the inside surface of the cylindric workpieces. The motions performed by active abrasive particles on the inside surface of the rotating hollow cylindric workpiece cause a higher finishing rate. The effects of particle motions on the reduction in surface roughness and improvement in surface morphology confirm the usefulness of the R-MRH process. The surface finish with the effect of the particles' motions of the MRP-fluid in the R-MRH process on the stationary workpiece’s inner surface is achieved upto 100 nm from 420 nm of the initial ground surface in 60 min of finishing. Whereas, the same aforementioned surface of the rotating workpiece is finished upto 50 nm from the same initial ground surface in only 40 min of finishing with the effect of the particles' motions of the MRP-fluid. The improvement in the surface finish is also noticed through the scanning electron micrographs in this work. The significant change in surface finish obtained in experimentations confirms the integrity of the analytical study conducted for understanding the effects of motions of particles while finishing with the R-MRH process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call