Abstract

Abstract An analysis of the transient film blowing process is presented based on the two-phase Giesekus/rigid rod model for flow-enhanced crystallization described in Part 1 [1]. Linearized frequency analysis has been used to explore the effects of system disturbances on the process. Results show that perturbations related to heat transfer and inflation pressure are more significant than the effects of film thickness (die swell). In addition, crystallinity is shown to have a consistent stabilizing effect on the system, with more crystallinity dampening the perturbations. Stability diagrams for each material show relatively wide regions of convergence in the blow-up ratio (BUR) – draw ratio space, however, at higher BURs (≥ ~ 4) the system becomes unstable for all DRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.