Abstract

The detail stress fields caused by fiber pullout or push-in while the fiber-matrix interface is under compressive thermal residual stress and undergoing frictional sliding are studied. The dominant stress fields in the local region at the immediate vicinity of the fiber protrusion point are solved using Muskhelishvili-Kolosov complex potential theory and asymptotic analysis. Parameteric studies determined the effects cast on the local fields by fiber-matrix material property combination, coefficient of friction, and the direction of relative fiber sliding. Reversing fiber sliding from pullout to push-in completely changes the nature of the local field. Using two specific composite systems as examples (fiber push-in Nicalon/calcium aluminosilicate composite, and fiber pullout in AVCO-SCS-6/borosilicate composite), the germane features of the local fields are independently verified by finite element global analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.