Abstract

Early detection of faults in DC motors extends their life and lowers their power usage. There are a variety of traditional and soft computing techniques for detecting faults in DC motors. Many diagnostic techniques have been developed in the past to detect such fault-related patterns. These methods for detecting the aforementioned potential failures of motors can be utilized in a variety of scientific and technological domains. Motor Power Pattern Analysis (MPPA) is a technology that analyzes the current and voltage provided to an electric motor using particular patterns and protocols to assess the operational status of the motors without disrupting production. Engineers and researchers, particularly in industries, face a difficult challenge in monitoring spinning types of equipment. In this work, we are going to explain how to use the motor power pattern/signature analysis (MPPA) of a power signal driving a servo to find mechanical defects in a gear train. A hardware setup is used to simplify the demonstration of obtaining spectral metrics from the power consumption signals. A DC motor, a set of metal or nylon drive gears, and a control circuit are employed. The speed control circuit was eliminated to allow direct monitoring of the DC motor's current profiles. Infrared (IR) photo-interrupters with a 35 mm diameter, eight-holed, standard servo wheel were employed to gather the tachometer signal at the servo's output. The mean value of the measurements was 318 V for the healthy profile, while it was 330 V for the faulty gears power data. The proposed power consumption profile analysis approach succeeds to recognize the mechanical faults in the gear-box of a DC servomotor via examining the mean level of the power consumption pattern as well as the extraction of the Power Spectral Density (PSD) through comparing faulty and healthy profiles

Highlights

  • The condition monitoring of direct current (DC) motor is essential for early warning of potential failures in machines and industrial applications

  • Vibration analysis is a useful tool for determining the current machine state, detecting problems of inoperative equipment, and monitoring overall machine health

  • The study aims to build a platform for mechanical fault inductance (La)) and the mechanical components

Read more

Summary

Introduction

The condition monitoring of direct current (DC) motor is essential for early warning of potential failures in machines and industrial applications. Analysis of fault diagnosis of dc motors by power consumption pattern recognition. The study aims to build a platform for mechanical fault inductance (La)) and the mechanical components (viscous diagnosis of DC motors through power consumption pattern friction and damping, and shaft inertia).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.