Abstract

Laser sintering metal has recently been used in the manufacture of components for different applications like aerospace or medicine. The approach to engineering design based on the cracks propagation assumption applying the concepts of linear elastic fracture mechanics (LEFM) is commonly used for aerospace engineering. However, fatigue crack propagation is linked to irreversible and non-linear mechanisms at the crack tip, therefore LEFM parameters can be successfully replaced by non-linear crack parameters, namely the plastic CTOD. A model linking da/dN with plastic CTOD is proposed here to characterize fatigue crack propagation. A comparison is made with other materials showing that for the same plastic CTOD the laser sintering material has a relatively large crack growth rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.