Abstract

The high‐density polyethylene (HDPE) films have been prepared either through melt quenching or isothermal crystallization. The fatigue behavior of those HDPE films under constant strain amplitude has been investigated based on dynamic viscoelastic and small angle light scattering (SALS) measurements during the fatigue process. Nonlinear viscoelastic behavior under cyclic fatigue has been observed for both melt‐quenched and isothermally crystallized HDPEs. Melt‐quenched HDPE showed greater fatigue strength compared with isothermally crystallized HDPE. The SALS measurement under cyclic fatigue can reveal the deformation process of spherulitic structure during the fatigue process. Melt‐quenched HDPE showed elongation of spherulitic structure under cyclic fatigue. On the other hand, isothermally crystallized HDPE did not show any elongation until the onset of fatigue fracture. The short fatigue lifetime and small deformation of spherulitic structure for isothermally crystallized HDPE can be ascribed to the sharp boundary between spherulitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.