Abstract
Bloom Filters are a desirable data structure for distinguishing new values in sequences of data (i.e., messages), due to their space efficiency, their low false positive rates (incorrectly classifying a new value as a repeat), and never producing false negatives (classifying a repeat value as new). However, as the Bloom Filter's bits are filled, false positive rates creep upward. To keep false positive rates below a reasonable threshold, applications periodically "recycle" the Bloom Filter, clearing the memory and then resuming the tracking of data. After a recycle point, subsequent arrivals of recycled messages are likely to be misclassified as new; recycling induces false negatives. Despite numerous applications of recycling, the corresponding false negative rates have never been analyzed. In this paper, we derive approximations, upper bounds, and lower bounds of false negative rates for several variants of recycling Bloom Filters. These approximations and bounds are functions of the size of memory used to store the Bloom Filter and the distributions on new arrivals and repeat messages, and can be efficiently computed on conventional hardware. We show, via comparison to simulation, that our upper bounds and approximations are extremely tight, and can be efficiently computed for megabyte-sized Bloom Filters on conventional hardware.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Measurement and Analysis of Computing Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.