Abstract
We analyze the efficacy of various point target detection algorithms for hyperspectral data. We present a novel way to measure the discrimination capability of a target detection algorithm; we avoid being critically dependent on the particular placement of a target in the image by examining the overall ability to detect a target throughout the various backgrounds of the cube. We first demonstrate this approach by analyzing previously published algorithms from the literature; we then present two new dissimilar algorithms that are designed to eliminate false alarms on edges. Trade-offs between the probability of detection and false alarms rates are considered. We use our metrics to quantify the improved capability of the proposed algorithms over the standard algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.